skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bahari, Babak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract In the past few years, concepts from non-Hermitian (NH) physics, originally developed within the context of quantum field theories, have been successfully deployed over a wide range of physical settings where wave dynamics are known to play a key role. In optics, a special class of NH Hamiltonians – which respects parity-time symmetry – has been intensely pursued along several fronts. What makes this family of systems so intriguing is the prospect of phase transitions and NH singularities that can in turn lead to a plethora of counterintuitive phenomena. Quite recently, these ideas have permeated several other fields of science and technology in a quest to achieve new behaviors and functionalities in nonconservative environments that would have otherwise been impossible in standard Hermitian arrangements. Here, we provide an overview of recent advancements in these emerging fields, with emphasis on photonic NH platforms, exceptional point dynamics, and the very promising interplay between non-Hermiticity and topological physics. 
    more » « less